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Spectroscopy

Experiments measure response of a system to a perturbation
Probes dynamic properties of crystal
Not ground state directly!

Spectroscopic techniques provide
incomplete information

IR and Raman have inactive modes

Hard to distinguish fundamental and
overtones processes in spectra

Little information on which atoms
involved means that mode assignment is
difficult

Would like a predictive technique that
does not rely on intuition to calculate
vibrational responses within a crystal.
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Why ab initio?

ab initio methods give us a highly transferable, parameter-free probe of
the experimental results.

Calculate vibrational properties on the same theoretical basis as electronic
properties.
Can probe whether a structure is stable wrt perturbations
Can compute zero point energy and phonon entropy contributions to free
energy.
Predict Raman and IR peaks
Captures the effects of electron-phonon interactions
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1d Chain of Atoms – I

Start with infinite 1d chain of atoms connected by springs (force constant J)

Equilibrium separation is a. un is the displacement of an atom from equilibrium
position.
Assuming only nearest neighbours interact, the force between neighbors i and i + 1 is

Fi,i+1 = −J(un+1 − un)
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1d Chain of Atoms – II

The total force on an atom i is the sum of both nearest neighbours which pull in
opposite directions

Fi = Fi,i+1 − Fi−1,i = −J(un+1 − un) + J(un − un−1) = J(2un − un+1 − un−1)

We use Newton’s second law, F = ma so,

M
d2ui

dt2
= J(2un − un+1 − un−1)

A known solution of this differential equation is a travelling wave

un,q(t) = ũn,qei(qx−ωq t)

where q = 2π
λ

is a wavenumber and ωq is an angular frequency. ũn,q is a vector
representing the motion of atom n.
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1d Chain of Atoms – III

Substituting this into the differential equation gives us

Mω2
q = 2J [1 + cos(qa)]

This leads to the dispersion relation:

ωq =

√
4J
M
|sin(qa/2)|

Single solution or branch for
each value of q.
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Diatomic Crystal – Optic modes

More than one atom per unit cell gives rise to optic modes with different
characteristic dispersion.
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Characterization of Vibrations in 3D Crystals

Vibrational modes in solids take form of waves with
wavevector-dependent frequencies (just like electronic energy levels).

ω(q) relations known as dispersion curves

N atoms in prim. cell⇒ 3N branches.

3 acoustic branches corresponding to sound propagation as q → 0 and
3N − 3 optic branches.
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Formal Theory of Lattice Dynamics

Based on expansion of total energy about structural equilibrium co-ordinates

E = E0 +
∂E
∂u

.u +
1
2!

∂2E
∂u2

.u2 +
1
3!

∂3E
∂u3

u3 + ...

At equilibrium the forces Fκ,α = − ∂E
∂u are all zero so 1st term vanishes.

E = E0 +
1
2

∑
uκ,α,a.Φκ,κ

′

α,α′ .uκ′,α′,a + ...

where uκ,α,a is the displacement of atom κ in unit cell a in Cartesian direction α.

In the Harmonic Approximation the 3rd and higher order terms are assumed to
be negligible

Φκ,κ
′

α,α′ (a) is the matrix of force constants

Φκ,κ
′

α,α′ (a) =
∂2E

∂uκ,α∂uκ′,α′
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The Force Constant Matrix (FCM)

This matrix represents all the effective
3d spring constants between atoms

Φκ,κ
′

α,α′(a) =
∂2E

∂uκ,α∂uκ′,α′

= −
∂Fuκ,α,a

∂uκ′,α′,a

Alternative view is change on force on
atoms due to displacing an atom

Rc
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The Dynamical Matrix (DM)

Solution in 1d can be reused with a few modifications for 3d:

uκ,α = εmκ,αqeiq.Rκ,α−ωt

Taking the derivative of the total energy equation to get the force, F and substituting
this trial solution, we have

Dκ,κ
′

α,α′ (q)εmκ,αq = ω2
m,qεmκ,αq

where

Dκ,κ
′

α,α′ (q) =
1√

MκMκ′
Cκ,κ

′

α,α′ (q) =
1√

MκMκ′

∑
a

Φκ,κ
′

α,α′ (a)e−iq.Ra

κ

κ'

q=a*/8

The dynamical matrix Dκ,κ
′

α,α′ (q) is
the Fourier transform of the force
constant matrix.

The solutions of the eigenvalue
equation correspond to vibrational
modes

Mode frequency is square root of
corresponding eigenvalue ωm,q .
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Formal Theory of Lattice Dynamics II

The dynamical matrix is a 3N × 3N matrix at each wavevector q.

Dκ,κ′

α,α′(q) is a hermitian matrix⇒ eigenvalues ω2
m,q are real.

3N eigenvalues⇒ modes at each q leading to 3N branches in
dispersion curve.

The mode eigenvector εmκ,α gives the atomic displacements, and its
symmetry can be characterised by group theory.

Given a force constant matrix Φκ,κ
′

α,α′(a) we have a procedure for
obtaining mode frequencies and eigenvectors over entire BZ.
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The Finite-Displacement method

The finite displacement method:

Displace ion κ′ in direction α′ by small distance ±u.

Use single point energy calculations and evaluate forces on every ion in
system F +

κ,α and F +
κ,α for +ve and -ve displacements.

Compute numerical derivative using central-difference formula

dFκ,α
du

≈
F +
κ,α − F−κ,α

2u
=

d2E0

duκ,αduκ′,α′

Have calculated entire row k ′, α′ of Dκ,κ′

α,α′(q = 0)

Only need 6Nat SPE calculations to compute entire dynamical matrix.

This is a general method, applicable to any system.

Can take advantage of space-group symmetry to avoid computing
symmetry-equivalent perturbations.

Works only at q = 0.
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Non-diagonal supercell method

New method by J. Lloyd-Williams and B. Monserrat, Phys Rev B, 92,
184301 (2015).

Extension of finite displacement method
Old "Direct" Supercell method calculates the FCM for each atom

Construct supercell big enough that we can ignore periodicity
Supercell needs to be big enough that interactions fall to zero
Often requires very large calculations with lots of atoms

Non-diagonal supercell method takes advantage of periodicity of
system

Calculates response at q by constructing a minimal supercell.
Supercells are much smaller than those in the supercell method.
Very efficient and can calculate DM on arbitrary grid.
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Second derivatives in QM

Goal is to calculate the 2nd derivatives of energy to construct FCM or Dκ,κ
′

α,α′ (q).

Energy E = 〈Ψ| Ĥ |Ψ〉 with Ĥ = − 1
2∇

2 + VSCF

Forces (first derivative) can be shown to be

F = −
dE
dλ

= −〈ψ|
dV
dλ
|ψ〉

Force constants are the second derivatives of energy

k =
d2E
dλ2

= −
dF
dλ

=

〈
dΨ

dλ

∣∣∣∣ dV
dλ
|Ψ〉+ 〈Ψ|

dV
dλ

∣∣∣∣dΨ

dλ

〉
− 〈Ψ|

d2V
dλ2

|Ψ〉

None of the above terms vanishes.

Need linear response of wavefunctions wrt perturbation (ie
〈

dΨ
dλ

∣∣∣).
In general nth derivatives of wavefunctions needed to compute 2n + 1th

derivatives of energy. This result is the “2n + 1 theorem”.
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Density-Functional Perturbation Theory

In DFPT need first-order KS orbitals φ(1), the linear response to λ.

λ may be a displacement of atoms with wavevector q (or an electric field E.)

If q incommensurate φ(1) have Bloch-like wavefunction:
φ

(1)
k,q(r) = e−i(k+q).r u(1)(r) where u(1)(r) has periodicity of unit cell.

First-order density n(1)(r) and potential v (1) have similar Bloch representation.

First-order response orbitals are solutions of Sternheimer equation(
H(0) − ε(0)

m

) ∣∣∣φ(1)
m

〉
= −v (1)

∣∣∣φ(0)
m

〉
First-order potential v (1) includes response terms of Hartree and XC potentials
and therefore depends on first-order density n(1)(r) which depends on φ(1).

Finding φ(1) is therefore a self-consistent problem just like solving the
Kohn-Sham equations for the ground state.
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Variational and Green function approaches

Two major approaches to finding φ(1) are suited to plane-wave basis sets:

Variational DFPT (X. Gonze (1997) PRB 55 10377-10354).
Conjugate-gradient minimization of variational 2nd-order energy
expression subject orthogonality constraint

〈
φ

(1)
n |φ

(0)
m

〉
= 0

Green function (S. Baroni et al (2001), Rev. Mod. Phys 73, 515-561).
Solve Sternheimer equation in self-consistent loop with
1st-order density mixing.

CASTEP implements both DFPT methods (phonon_dfpt_method).
Variational DFPT implemented for insulators only, Green function/DM for both
insulators and metals.

DFPT has huge advantage - can calculate response to incommensurate q from
a calculation on primitive cell.

Disadvantages of DFPT:

Needs derivatives for the XC functional – only works for some functionals
(LDA, PBE, etc)
Not implemented for ultrasoft pseudopotentials – have to use NCP
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Fourier Interpolation of dynamical Matrices

FCM decays quickly

Approximate by reverse Fourier
transform of DM

Use forward transform to get DM at
arbitrary q

Handle Coulomb analytically

Φ(r)

r
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Acoustic Sum Rule

At the Γ point, the 3 lowest energy modes should be exactly zero
This corresponds to the 3 translational symmetries in a periodic crystal
Atomic motion becomes more and more like a rigid shift as q → 0

Insufficient convergence may lead to this not being true
Numerical noise can affect this
Insufficient sampling in real or reciprocal space

We can "fix" solution to enforce this sum rule
REALSPACE Correct the FCM in real space.

RECIPROCAL Correct the DM at q = 0 and then apply this correction
to all DMs.

Select method by phonon_sum_rule_method
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Methods in CASTEP

CASTEP can perform ab initio lattice dynamics using

Primitive cell finite-displacement at q = 0

Supercell finite-displacement for any q
DFPT at arbitrary q.

DFPT on MP grid of q with Fourier interpolation to arbitrary fine set of q.

Finite displacements using non-diagonal supercells with Fourier
interpolation.

Full use is made of space-group symmetry to only compute only

symmetry-independent elements of Dκ,κ′

α,α′(q)

q-points in the irreducible Brillouin-Zone for interpolation

electronic k -points adapted to symmetry of perturbation.
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k-points and q-points

For phonons we have two sets of points in the Brillouin zone which are both
defined in the .cell file

k-points These are the points where we solve the Kohn-Sham equations to
obtain wavefunctions and total energies. These are specified by:
kpoint_<tag>
spectral_kpoint_<tag>
supercell_kpoint_<tag>

q-points These are the points that we calculate the phonons modes on. They
are specified by:
phonon_kpoint_<tag> phonon_fine_kpoint_<tag>

where <tag> is one of
mp_grid A Monkhurst-Pack grid specification (nx , ny , nz )

mp_offset An offset to apply to the above grid
list A list of points to sample

spacing Use a grid with at most this spacing
path Generate a path between this list of points
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A CASTEP calculation I - simple DFPT

Lattice dynamics assumes atoms at mechanical equilibrium.
Golden rule: The first step of a lattice dynamics calculation is a
high-precision geometry optimisation

Parameter task = phonon selects lattice dynamics calculation.

Iterative solver tolerance is phonon_energy_tol. Value of 10−5

eV/Ang**2 usually sufficient. Sometimes need to increase
phonon_max_cycles

Need very accurate ground-state as prerequisite for DFPT calculation
elec_energy_tol needs to be roughly square of
phonon_energy_tol

Dκ,κ′

α,α′(q) calculated at q-points specified in cell file by
phonon_kpoint_<tag>
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Example Phonon Output – Si2

==============================================================================
+ Vibrational Frequencies +
+ ----------------------- +
+ +
+ Performing frequency calculation at 3 wavevectors (q-pts) +
+ ========================================================================== +
+ +
+ -------------------------------------------------------------------------- +
+ q-pt= 1 ( 0.000000 0.000000 0.000000) 0.1250000000 +
+ -------------------------------------------------------------------------- +
+ Acoustic sum rule correction < 11.519522 cm-1 applied +
+ N Frequency irrep. ir intensity active raman active +
+ (cm-1) ((D/A)**2/amu) +
+ +
+ 1 -0.026685 a 0.0000000 N N +
+ 2 -0.026685 a 0.0000000 N N +
+ 3 -0.026685 a 0.0000000 N N +
+ 4 514.731729 b 0.0000000 N Y +
+ 5 514.731729 b 0.0000000 N Y +
+ 6 514.731729 b 0.0000000 N Y +
+ .......................................................................... +
+ Character table from group theory analysis of eigenvectors +
+ Point Group = 32, Oh +
+ .......................................................................... +
+ Rep Mul | E 4 2 2’ 3 I -4 m_h m_v -3 +
+ | ---------------------------------------- +
+ a T1u 1 | 3 1 -1 -1 0 -3 -1 1 1 0 +
+ b T2g 1 | 3 -1 -1 1 0 3 -1 -1 1 0 +
+ -------------------------------------------------------------------------- +
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CASTEP phonon calculations II - Fourier Interpolation

Specify grid of q-points using phonon_kpoint_mp_grid p q r.

To select interpolation phonon_fine_method = interpolate

Golden rule of interpolation: Always include the Γ point (0,0,0) in the
interpolation grid. For even p, q, r use shifted grid
phonon_fine_kpoint_mp_offset 1

2p
1

2q
1
2r to shift one point to Γ

Dκ,κ′

α,α′(q) interpolated to q-points specified in cell file by
phonon_fine_kpoint_<tag>

Can calculate fine dispersion plot and DOS on a grid rapidly from one
DFPT calculation.

Real-space force-constant matrix is stored in .check file.
All fine_kpoint parameters can be changed on a continuation run.
Interpolation is very fast.
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CASTEP phonon calculations III - Non-diagonal Supercell

To select set both phonon_method = finite_displacement and
phonon_fine_method = interpolation

Specify grid of q-points using phonon_kpoint_mp_grid p q r - as for
DFPT. CASTEP will automatically determine supercells to use - no
need to explicitly set supercell in .cell file.

K-points for supercell set using spacing or grid keywords
supercell_kpoint_mp_spacing

CASTEP automatically chooses a series of non-diagonal (skew)
supercells and performs FD phonons and computes Dκ,κ′

α,α′(q) on grid of
q-points specified in cell file by one of same phonon_kpoint
keywords.

From there calculation proceeds exactly as for supercell or DFPT
interpolation.
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Running a phonon calculation

Phonon calculations can be lengthy. CASTEP saves partial calculation
periodically in .check file:

num_backup_iter n – Backup every n q-vectors
backup_interval t – Backup every t seconds

Phonon calculations have high inherent parallelism. Because
perturbation breaks symmetry relatively large electronic k-point sets are
used.

Number of k-points varies depending on symmetry of perturbation.

Try to choose number of processors to make best use of k -point
parallelism. If Nk not known in advance choose NP to have as many
different prime factors as possible - not just 2!



Examples
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DFPT with interpolation for Au
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α-quartz
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MoS2 – Bulk vs monolayer
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Convergence issues for lattice dynamics

ab initio lattice dynamics calculations are very sensitive to convergence issues. A
good calculation must be well converged as a function of

1 plane-wave cutoff
2 electronic kpoint sampling of the Brillouin-Zone (for crystals)

(under-convergence gives poor acoustic mode dispersion as q → 0
3 geometry. Co-ordinates must be well converged with forces close to zero

(otherwise calculation will return imaginary frequencies.)
4 For DFPT calculations need high degree of SCF convergence of ground-state

wavefunctions.
5 supercell size for “molecule in box” calculation and slab thickness for surface/s

lab calculation.
6 Fine FFT grid for finite-displacement calculations.

Accuracy of 25-50 cm−1 usually achieved or bettered with DFT.

need GGA functional e.g. PBE, PW91 for hydrogenous and H-bonded systems.

When comparing with experiment remember that disagreement may be due to
anharmonicity.
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Nb – Imaginary Phonon Modes/Negative Frequencies
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0

50

100

150

200
ω

 (c
m

-1
)



Phonons
and Lattice
Dynamics

Peter Byrne

Motivation

Lattice
Dynamics
of Crystals

Ab initio
Lattice
Dynamics

Lattice
Dynamics
in CASTEP

Examples

38/43

“Scaling”

DFT usually gives frequencies within a few percent of experiment.
Exceptions are usually strongly-correlated systems, e.g. some
transition-metal oxides where DFT description of bonding is poor.

Hartree-Fock approximation systematically overestimates vibrational
frequencies by 5-15%. Common practice in quantum chemistry is to
multiply by "scaling factor" ≈ 0.9.

Scaling less useful for DFT where error is not systematic. Over- and
under-estimation equally common.

Exception is for purposes of mode assignment, or direct comparison
with experimental spectra. It is sometimes useful to apply empirical
scaling (or per-peak shift). This does not generate an “ab initio
frequency”.
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Conclusion

Phonons can be calculated by either
Finite displacement with

Primitive cell at q = 0
Non-diagonal supercell on MP grid
Direct supercell to calculate FCM

Density functional perturbation theory
At arbitrary q

Interpolation is very useful for finely sampling phonons.

Acoustic sum rule can help correct frequencies at q = 0

Raman and and IR can be calculated (more on this tomorrow!)

Thanks for listening!
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The Supercell method

The supercell method is an extension of the finite-displacement approach which
depends on short-ranged nature of FCM: Φκ,κ

′

α,α′ (a)→ 0 as Ra →∞.

Φ(r)

r

In non-polar insulators and most
metals Φκ,κ

′

α,α′ (a) decays as 1/R5

or faster.
In polar insulators Coulomb term
decays as 1/R3

Define radius Rc beyond which
Φκ,κ

′

α,α′ (a) is negligible
For supercell with L > 2Rc then
Cκ,κ

′

α,α′ (sc) ≈ Φκ,κ
′

α,α′ (a).
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The Supercell method

1 Choose sufficiently large supercell and compute Cκ,κ
′

α,α′ (sc) using
finite-displacement method.

2 Non-periodic real-space force-constant matrix directly mapped from periodic
supercell FCM. Φκ,κ

′

α,α′ (a) ≡ Cκ,κ
′

α,α′ (SC)

3 Fourier transform using definition of D to obtain dynamical matrix of primitive cell
at any desired q.

4 Diagonalise Dκ,κ
′

α,α′ (q) to obtain eigenvalues and eigenvectors.

This method is often (confusingly) called the “direct” method.
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Overlap Errors

Size of supercell limits Rc . Too small a supercell means that Φκ,κ
′

α,α′(a) can

not be cleanly extracted from Cκ,κ′

α,α′(SC) and dispersion curves will contain
error.
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