Home Page

Nothing amuses more harmlessly than computation and nothing is oftener applicable to real business or speculative enquiries. A thousand stories which the ignorant tell, and believe, die away at once, when the computist takes them in his grip.
Samuel Johnson

CASTEP is a leading code for calculating the properties of materials from first principles. Using density functional theory, it can simulate a wide range of properties of materials proprieties including energetics, structure at the atomic level, vibrational properties, electronic response properties etc. In particular it has a wide range of spectroscopic features that link directly to experiment, such as infra-red and Raman spectroscopies, NMR, and core level spectra.

Chris Pickard Awarded IOP Rayleigh Medal and Prize

for "his development of new theories and computational tools for the first principles investigation of matter, which have greatly aided the interpretation of magnetic resonance experiments, have revealed a range of unexpected phenomena in materials at extreme pressures, and increasingly underpin computational materials discovery". Full citation on IOP website

2018 CASTEP Workshop in Oxford

The CASTEP developers will hold a Training Workshop 20th-24th August in Oxford Workshop2018.

Research Highlight

Extraordinarily Long-Ranged Structural Relaxation in Defective Achiral Carbon Nanotubes CASTEP was used to investigate the structure of defects in carbon nanotubes. It was found that the results clearly demonstrate that the structural relaxation associated with reconstruction of an isolated monovacancy defect within a graphitic nanotube lattice can be extraordinarily long ranged (far longer than in any ‘conventional’ solid). As a result, it is likely that much published data derived from ab initio calculations of defective or functionalized carbon nanostructures to date have treated systems of insufficient size or with unphysical constraints (periodic boundary conditions) and therefore require careful evaluation. ref.

more highlights